A Study On Bengali Elaborate Color Terms

Rusa Bhowmik
Jadavpur University, India

ARTICLE INFO

Article history:
Received 03/10/2018
Received (revised form) NA
Accepted 07/12/2018

Keywords:
elaborate color terms;
Bengali;
cognition;
language use;

ABSTRACT

The aim of this paper is to investigate how bilingual people respond in their native language for Elaborate Color Terms (ECTs). Color is generally perceived as a unitary domain albeit this study shows that the majority of ECTs were explained not by profiling against a single domain rather an overlap of domains. The study is done by interviewing ten native Bengali speakers (who speak English as L2). The speakers were given a color palette consisting of 55 shades. They were asked to identify those in their native language, Bengali. The variations among the speakers seemed to be quite interesting. The usage of compound forms and derivative forms was high; also the usage of hue-saturation-lightness comes here at play for describing some similar shades. Another tendency was using the word /moto/ or /moton/ ‘alike’ when the speakers couldn’t exactly identify the ECT but could place it under a certain BCT. The main thing one can conclude here is that the ECTs that developed with time were due to the contextual usage and functionality of those colors in daily life. The culture along with the bio-physical perception plays an important role in formation of color terms, which had been stated here in the Bengali language.

1. Introduction

The paper is based on the arguments raised in Basic Color terms (Berlin & Kay, 1991) and focuses on Bengali Elaborate Color Terms (ECTs). The study shows that the majority of ECTs were explained not by profiling against a single domain rather an overlap of domains. ECTS that were developed by mixing the secondary and the primary colors were rarely monolexemic. The speakers tried to explain the variations among the ECTs by the usage of modifiers.

1 Secondary color terms, or non-basic color terms, are simplex and complex lexemes. Scarlet, blond, indigo, puce, and eggshell are simplex lexemes, and yellowish, light green, orange-red, wine red, and tea rose are complex lexemes (cf. Bauer 1983: 29-30). (Hardin & Maffi, 1997, p. 232)

2 Color palette of 55 shades
2. Objective of the Study

The aim of this paper is to investigate how bilingual people respond in their native language for Elaborate Color Terms.

3. Theoretical Background

3.1 Literature Review

Every language has an intrinsic vocabulary according to its needs, which might or might not be found in other languages. There is no language yet which has an ideal vocabulary. There are no words for every single entity in its existence in any (one) language only. Moreover, it is not necessary that sounds of words can reveal their meaning in most of the cases.

In lexical typology, there are some scalar dimensions and one of them is color. The boundaries in color spectrum were not clear initially and the division seemed to be done in arbitrary. With Berlin and Kay’s hypothesis (1969) and later the empirical data on 98 languages gave answers for a lot of unsolved issues. The two major findings of Berlin and Kay were 1) the existence of universal constraints on cross-language color naming, and 2) the existence of a partially fixed evolutionary progression according to which languages gain color terms over time (The World Color Survey, 2009).

It was drawn that languages have a total universal inventory of eleven basic categories. They are white, black, red, green, yellow, blue, brown, purple, pink, orange and grey. Moreover, it has a distributional restriction as follows:

\[
\text{[white] < [red] < [green] < [blue] < [brown] < [purple] < [pink] < [orange] < [grey]}
\]

Image 1\(^3\)

If a language has a term for any one of the colors, it will have a term for the colors on its left (Berlin & Kay, 1991, pp. 1-3). It was also deduced that the development of the color terms happened likewise:

\[
\text{[white] \rightarrow [red] < [green] \rightarrow [yellow] < [blue] \rightarrow [brown] \\
\text{[purple] < [pink] < [orange] < [grey]}}
\]

Image 2\(^4\)

\(^3\) (Berlin & Kay, 1991, p. 4)
\(^4\) (Berlin & Kay, 1991, p. 4)
It was rare for languages to have either white or black and not the other. The development of yellow and green was not simultaneous rather a stage III and stage IV. If the languages have a term for any one term of the group (purple, pink, orange, grey) it was found that it has terms for all of them (Berlin & Kay, 1991, pp. 15-16).

The language on which the study has been conducted shows 11 basic color terms:

\[
\begin{align*}
[\text{jada kalo}] < [\text{tal}] < [\text{jobudholud}] < [\text{nil}] < [\text{khorer}] < [\text{beguni golapi komola dhujor}]
\end{align*}
\]

Image 3

The development of ECTs in each language if happens does through a course of time, so it can be presumed for Bengali too. But all ECTs cannot be determined by \textit{hue, saturation, and brightness} only (Kay & Maffi, 1999, p. 747). This is because the preference of inventing new terms or relating to existing terms is more frequent among most of the speakers while describing the color terms trying to relate them to various objects and nature. The perception of hue, saturation, and brightness varies among the speakers. The factor that played an important role in the development of some ECTs is the knowledge of a second language, English. Here, English influences the cognitive domain of (urban) Bengali speakers; therefore when inventing a new term seems improbable speakers tend to refer to English Color Terms. Also, it was noted that the speakers tend to code switch between English and Bengali for forming compounds like /halka aʃ/ where /halka/ means light and /aʃ/ ‘ash’ is a variation of grey. This will be discussed later in details in the findings.

4.2 Cognitive Approach

Cognitive Linguistics argues that language is governed by general cognitive principles, rather than by a special-purpose language module (Croft & Cruse, 2004, p. i). Therefore, “the three major hypotheses as guiding the cognitive linguistic approach to language:

- language is not an autonomous cognitive faculty
- grammar is a process of conceptualization
- knowledge of language emerges from language use” (Croft & Cruse, 2004, p. 1)

In cognitive semantics, the meaning of a lexical item is usually regarded as being best described in terms of a figure-ground relationship. Any linguistic concept (predication) is understood against some sort of background knowledge and the associations that are linked to the concept (Steinvall, 2002, p. 42).

Cognitive domains can be listed as basic domains, which generally constitute of color, smell, two- and three- dimensional space, and non-basic domains also called abstract domains.

In the domain matrix, there is one domain which plays the most important role and that domain is regarded as a primary domain. In lexical semantics to explain such relations, they correspond to meronymy and hyponymy (Steinvall, 2002, p. 42).
The names of ECTs are generally derived from natural sources. In the case of Bengali, they are mainly developed from names of dyes, flowers, birds, vegetation, and water bodies; also fruits, vegetables, spices, nuts, cereals. In general, it can be said that some of the ECTs are related mainly with edible items. This helps us to reflect upon the transparency and opaqueness of ECTs (Steinvall, 2002, p. 146). Most of the ECTs here do have a non-color meaning. This results in polysemous relations (Steinvall, 2002, p. 145).

There are certain ECTs which are hyponyms as well as are synonymous in nature. But, there are also ECTs that cannot be located under one BCT domain. The overlapping situation creates a disjunction in placing them under one singular domain of a superordinate color. This creates a difficulty in the cognitive domain. ECTs that can be entailed under a hyponym also create a problem in the color domain, because the ECTs within a range associate at the boundaries of the range thereby creating a confusion to locate its primary domain. Whereas, in the case of BCTs the main focus is usually found near the midsection of the range. Apart from these are also the usage of the ECTs and their differing distributions.

Interestingly enough there were a number of variations found among the speakers of Bengali. From the cognitive point of view, this can be termed as a construal. Construal means the way we choose to view a particular situation or entity (Steinvall, 2002, p. 60). And that’s how the specificity of the concepts fit under the superordinate domain.

There is also a tendency for classifying the ECTs by referencing their superordinate BCT, sometimes appearing together with their BCT. When processing the corpus, not all color term combinations can be viewed in terms of a micro-syntax (Steinvall, 2002, p. 78). Very often there are enumerations of color terms where more than just two colors appear which will be pointed out in details in speaker variation.

(Steinvall, 2002, p. 63)
5. Research Methodology

The speakers were given a color palette consisting of 55 shades. They were asked to identify those in their native language, Bengali. The variations among the speakers seemed to be quite interesting. The usage of compound forms and derivative forms was high; also the usage of hue-saturation-lightness comes here at play for describing some similar shades. Another tendency was using the word /moto/ or /moton/ ‘alike’ when the speakers couldn’t exactly identify the ECT but could place it under a certain BCT. Therefore, if it is not much necessary, /moto/ or /moton/ will be generally avoided for speaker variation. Also, the loanwords from English are tried to be addressed as a whole rather color specifically.

![Color palette of 55 shades](color terms.pdf)

Table 1: Color palette of 55 shades

6. Findings and Discussions

6.1 Black and white

There was no variation for identifying the universal BCTs; /kalo/ ‘black’ (shade 37) and /jada/ ‘white’ (shade 55). Interestingly enough, ECTs for white was found in shades 12, 19, 20, 33. For shade 12 /dudherʃɔrerrɔŋ/ and /dudʃada/, /tɔʃor/ and /puroʃada noe/ were among the variations, the other being off-white is a loanword in Bengali. The two main variants /akaʃiʃada/ and /kagoʤeʃada/ were found for shade 19. /ʃobjeʈeʃada/ was one variation in shade 20. Another variation was /dhuloʈeʃada/ for shade 33.

6.2 Are all reds same?

The spectrum of Red seems extended in Bengali. This is because most of the speakers tried to posit Shades no. 2, 4, and 54 as /lal/ ‘red’ as a BCT. Though for shade 2 there are some variations of red and others being /khɔeri/ ‘brown’ and /merun/ ‘maroon’. But these two are hyponyms of red as well. In one instance, a variation in shade 7 is /lalermoton/. For shade number 54, the other main variation was /komla/ ‘orange’. The data collected from the speakers show that the range of red is extended and bit different on the spectrum assessing to English. Also, the ECTs of red appear together with their superordinate BCT. Here are the variations collected for shades no. 1, 2, 3, 4, and 7 and one from

6 color terms.pdf
shade 54. The derivative forms here are /golapilal/, /kalṭelal/ and the compound forms for red are /rokoṭalal, /meṭelal, /ṭṭalal, /altalal, /ṭidurlal/ or /ṭidurelal, /ɡadɡorlal, /lporalal/.

6.3 The yellow and orange fiasco

There was no doubt for shade 50 and all the speakers termed it as /holud/ or /holde/ ‘yellow’ and also, the general tendency of the speakers for shade 11 was to place it under the BCT /holud/, and BCT /kömolal/ or /kɔmla/ ‘orange’ for shade 9. But, there was a major confusion to determine /kömolal/ or /kɔmla/ among the shades 52, 53, 54. For shade 52, the variations were for ECTs of /holud/. ECT /ʃorʃelrɔn/ cannot be placed under one color domain. Similarly, shade 53 could not be determined to be placed under any one BCT. /kömolal/ or /kömla/ or /lal/ seemed to be the BCTs for shade 54. The hyponyms for /kömolal/ or /kɔmla/ are /poramaṭi/ and /gerula/. In general, the BCT for shade 9 is /kömolal/ or /kɔmla/. In shade 4 there is an ECT /lalṭekomla/. This difficulty most probably rose for speakers because the BCT ‘orange’ derives from the fruit, so do /kömolal/ or /kömla/. Here, the cognitive perception of every individual correlates for the related BCTs hence, creating the confusion. Also, this can be deduced that the division in the spectrum of orange and yellow in Bengali is fuzzy.

6.4 The study in pink

In Bengali, the variations in /golapi/ ‘pink’ has been mainly denoted with the help of lightness and saturation which can be seen for shades 3, 6, 12, 13, 14, 15, 16, 26, 27, 53. Moreover, derivative forms and compound forms are not frequent, unlike red. Even more, rarely is used is the /golapirmoto/ form. The ECTs /dudhealta/, /rani/ and /pɛdʒi/ are hyponyms of /golapi/. Shade 14 and 15 both can be constituted as BCT /golapi/.
6.4 Purple-Violet conjoint

One of the main culture specificity is that in Bengali there is no apparent difference in purple or violet or shades of them. ECTS of shades no. 18, 25, and 28 were in general denoted as /beguni/ by the speakers. The variations that were found among speakers for shade 18 was /panaphulɔŋ/ (and the speaker repeated the same for shade 25) and /dɔamerrɔŋ/ which are again derived from a flower and a fruit respectively. For shade 25 i.e. blue-violet, variations were /nilʃebeguni/, /halkamojurkonʈhi/and /halkabeguni/. /mojurkonʈhi/ is culture-specific which can be corresponded to peacock blue. The difference in the other two variations was mainly because of hue and lightness respectively. Meanwhile, the ECTs /nilʃebeguni/, /halkamojurkonʈhi/ has been used by some speakers for shade 24. Shade 28 seemed to be the universal BCT /beguni/ for Bengali speakers. Also one speaker has used /kalʧebeguni/ for shade 36 and /begunir moto/ is once used for shade 17, and 24.

6.5 Is the blue one or two?

The color /akaʃi/ ‘sky blue’ though has not been acknowledged as a BCT, but it behaves independently like the BCT /nil/ ‘blue’. Though the ECT /akaʃi nil/ might seem to refute the claim, but the compounds like /ʃadaʈeakaʃi/, /halkaakaʃi/, /gæroʊakaʃi/, /ghoʊoakaʃi/, and /akaʃi/ itself appears quite a number of times thereby deducing that /akaʃi/ can qualify as an independent color term if not a BCT. The idea of another BCT is plausible despite the fact that Bengali has been already proven with 11 BCTs. Also, the compound formation with BCT /nil/ seems quite common. There is a clear preference for using modifiers related to lightness and saturation for shades of blue. The shades 24, 29, and from shade 31 to shade 36 the majority of speakers related them with ECTS of blue. In the shade range 38-41, there is a gradual shift from the ECTS of blue to the ECTS of green.

6.6 The range of Green

There are a lot of speaker variations for the shades of green some of which depended on the hue-lightness-saturation scale, the others being the hyponyms and the compound forms. There are also quite a number of derivative forms as well. The majority of ECTS of green were in the range from 42-49 except 44 (for the majority). In this case, shade 45 gives the impression for the centre of the BCT spectrum /ʃobudʒ/ ‘green’. Most of the variations for shades 10, 21, and 30 were ECTS of green. Though, for shades 11, 22, 29, 38, 39, 40, and 41 there seemed to be an apparent confusion of the speakers to place it under a single domain.
6.7 The very brown case

The ECTs of /khɔeri/ ‘brown’ and the BCT itself has been placed by speakers for shade no. 1, 2, 3, 7, 8, and 9. Compound form /golapikhɔeri/ has been identified for shade 3. BCT was identified once each in shade 1, 7 and 9. Shade 8 seems to be situated in the focus of the spectrum for BCT brown.

6.8 The shades of grey

The speakers identified shades no. 19, 20, 21, 22, 23, 30, 38, and 44 as multiple shades of grey. Very few variations for grey were found for shade 19, 30, 38. For shade 20, 21, 22, 23 almost all the variants for grey was stated by the speakers. There was an apparent confusion whether shade 44 was greyish green or greenish grey among the speakers. Shade 22 and 23 seemed to be the universal BCT for grey in Bengali. Moreover, the speakers used English color terms in some of the cases instead of the Bengali color terms.

6.9 The mixed bag

The usage of color terms like maroon, magenta, purple, mauve, slate, steel, ash, tomato, indigo, sap green, sea green, peach, beige, and biscuit show the preference for English of the bilingual speakers when they cannot deduce the ECTs in Bengali. Also, the knowledge of English color terms influences the cognitive domain to fill the lacuna in their language. Likewise, color terms like /dudhe-alt/,
/mehendi/, /ʧɔndon/, /baʃonti/, /gerua/, /ʧhai/ are very much related in a culture specific manner. Using the modifier deep for shade 17 and specially code mixing in shade 52 instead of using /gaɽho/ and /khunilal/ for shade 1 can be deduced as a result of the influence of other languages, English and Hindi respectively. There is also a high amount of code mixing among the speakers for ECTs in shades 6, 20, 21, 22, and 23.

6.10 The challenging ones

The variations in shade 5, 12 and 13 denote that the perception of each speaker though similar in their cognitive approach did not reciprocate the very same through the usage of the ECTs. The problem for locating the BCT occurred as these shades were generated by an overlapping of more than one primary domain. Though these might come under red, yellow, pink, and/or orange, these ECTs can be considered as near synonyms and co-hyponyms.

6.11 Modifiers

The usage of suffixes [-ʈe], and [-ʧe], [-ʤe] are used to form the derivational forms of color. For example, /meʈe/, /holdeʈe/, /lalʧe/, /kaiʃe/, /ʃobʤe/.

Onomatopoeic origins: Modifiers like /kaeʈkeʈe/ or /kæוחʈkeוחʈe/, /ʈukʈuke/ or /ʈɔkʈɔke/, and /dhobdhobe/ are used to improve the quality of the color. It can be said that these words increases the colorness of the color. For example, /dhobdhobeʃada/ here helps increasing the whiteness of white, i.e. the quality of the color. The main difference it has with derivational forms is in the usage of affixes i.e. these onomatopoeic affixes use [-e]. The functionality aspect is similar in nature.

6.12 Polysemous relations

Steinvall (English Color Terms In Context, 2002) opines that almost all ECTs are ultimately derived from names of entities through a process of metonymy. It was also suggested that the construction x-colored represents an intermediate stage in this process (p. 145). This notion of ‘x-colored’ is also found in Bengali as x-/rɔŋ/.

Another way of describing the state of affairs is to say that there is a polysemous sense relation.
between the entity sense and the color sense (Steinvall, 2002, p. 146).

Neologisms: The preference of inventing new terms or relating to existing terms is more frequent among most of the speakers while describing the color terms trying to relate them to objects and nature. Color terms like /pēadjī/, /beguni/ are used to mean the fritters of onion and brinjal; /holud/ is a spice; /komla/, /dɔlpai/, /patilebu/ are fruits; these are that have both color and a non-color meaning and the entity sense is that they are related with edible items. Similarly, /tɔʃor/ is a type of fabric, /nɔfį/ is a substance used for addiction, /faeola/ is more often used to mean moss and less of a color term.

7. Conclusion

Probing into the vast differences among vocabularies of different languages is a broadening experience. If we only know one language, it seems that it is the only way for a language to be. Learning about other languages, we discover that just because something is familiar to us, it may not be the only option; there are diverse ways in which words can capture reality (Moravcsik, 2013, p. 60). The main thing one can conclude here is that the ECTs that developed with time were due to the contextual usage and functionality of those colors in daily life. The culture along with the bio-physical perception plays an important role in the formation of color terms, which had been stated here in the Bengali language.

References

